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The stability of the permanent rotation of a symmetrical heavy body with a viscous filling is investigated. A finite-dimensional 
phenomenological model of the “internal friction” with which the filling acts on the wall of the cavity is constructed based on 
the Helmholtz equations for a vortex. The boundaries of the stability limit are constructed and the interaction between the internal 
friction and the external damping is tracked. It is shown that the cases of a cavity that is oblate and prolate along the axis of 
rotation lead to the existence of different forms of stability regions. 0 2002 Elsevier Science Ltd. All rights reserved. 

The modern formulation of the problem of the stability of the permanent rotation of a body with an 
ideal fluid about a vertical axis of symmetry was presented by Rumyantsev [l]. The case of the uniform 
vortex motion of a fluid was considered in [2]. Different versions of this problem have been discussed 
in [3] and elsewhere. A boundary layer was “added on” to the uniform vortex flow of the fluid and an 
estimate of the effect of the viscosity of the filling was given in [4].$ The Helmholtz equations for a 
vortex were used5 when constructing a finite-dimensional phenomenological model of “internal friction”. 

Below, using this model, we investigate the nature of the stability of the permanent rotation of a body 
with a viscous filling. 

1. FORMULATION OF THE PROBLEM 

Consider the motion about a fixed point 0 of an axisymmetric heavy body, having an axisymmetric cavity 
completely filled with a viscous fluid. Suppose Oz is the axis of symmetry of the cavity and the vessel. 
For simplicity we will assume that the centre of the cavity coincides with the point C - the centre of 
gravity of the body-vessel. 

We will connect with the body a system of coordinates Oxyz, directing axes along the principal axes 
of inertia of the body. We will introduce [5] a system of coordinates OXYZ, rotating about the vertical 
OZ. The orientation of the body is defined by three angles: y the cyclic rotation of the 0Z.x plane, which 
coincides with OZX plane, about the vertical) and a and p (the Krylov angles in the OXYZ axes). 

In addition to the gravity force Mg, we will take into account the external damping moment D (of 
an aerodynamic nature) and the interaction between the vessel walls and the filling, which is reduced 
to a resultant pair of forces with moment L. 

We will describe the motion of the system. The vector G, of the angular momentum body about the 
fixed point 0 is related to the angular velocity of the body by_the_we!l-known relation GI = O,o, where 
the tensor 0, is formed by the principal moments of inertia A,, A,, C, of the body for the point 0. 

We will assume that the fluid filler performs so-called simple motion in the cavity [6]. Its state is then 
described by three components of the vortex Q, and the vector of the angular momentum of the filler 
about the fixed point Gg can be represented in the form 

G, = Q;o+ 0% 

tPrik1. Mat. Mekh. Vol. 66, No. 3, pp. 427-433, 2002. 
*See also: SAMSONOV, V A. and FILIPPOV, V V, An experimental estimate of the effect of a fluid in the cavity of a body 

on its rotation. Report of the Institute of Mechanics, Moscow State University, No. 2386, 1980. 
BSAVCHENKO, A. Ya., SAMSONOV, V A. and SUDAKOV, S. N., A phenomenological model of interaction of a filler with 

the wall of a processing vessel. Report of the Institute of Mechanics, Moscow State Universty, No. 3617, 1988. 
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where the tensor O*, is formed by the moments of inertia A*, C* of the so-called equivalent body, while 
the tensor 0’ is formed by the differences of the moments of inertia of the fluid and the equivalent 
body. 

We will write the equation of motion of the system in the principal axes using the theorem of the 
change in the angular momentum about a fixed point, 

(0, +@*)$+a$ +ox[(O,+O*)W+G’~]=M~~~ (1.1) 

where Mext is the moment of the external forces acting on the system. 

2. A MODEL OF THE “INTERNAL FRICTION” 

We will assume that there are two mechanisms by which the filler and the rigid body interact: the normal 
pressure of the filler on the vessel wall LP and the tangential friction of the fluid against the vessel wall 
q. To take into account the normal pressure on the vessel wall we will transform the well-known 
Helmholtz equations for the uniform vortex flow of the fluid 

ti, = OJR, - (1 - e)o,RJ - eQ*R, = 6, 

Q2 = -o&l, + (1 - e)o,R, + eQ,R, =6, 

!& = (I+ e)(o,R, -o&2,) = 6, 

(2.1) 

where the parameter e represents the relative elongation of the cavity, together with Eq. (l.l), to the 
form 

~;,+coxG,=~+M~~~ =Lp+Mext, t2,+0xG,=-5=-L, (2.2) 

Here 

+ Cc, -A,)%~, + Mext, (1 23) 

~, = A, + M,s*, Bi = Ai 

Mt is the mass of the body and s is a variable parameter - the coordinate of the point C on the Oz 
axiS 

To introduce the friction of the filling against the vessel wall, we will add the moment Lf to the right- 
hand side of the first equation of (1.3) and the moment -Lfto the right-hand side of the second equation, 
respectively. We obtain the following system 

~;,+oxG,=L~+L,+M,,~ (2.3) 

G,+wxG,=-L,-L, (2.4) 

We will assume that the moment Lr depends linearly on the difference of the vortex vector of the 
filler and the angular velocity of the body 

L, = o(n-0) 

where cr is the coefficient of internal friction. 

3. THE DYNAMICAL SYSTEM 

We will replace system (2.3), (2.4) by the equivalent system 2.3, (2.1) and we will write the system obtained 
in the form 
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A& + A’S& + (C, - A,)w,o, + C’o& - A’o,Q, = Mext, 

A,&, + A’!& + (A. - C.&w, + A’w,R, - C’o,R, = MeXt2 

C& + C’ti, + A’(o,R, -0&2,) = Mext3 (3.1) 

ir, = W3R2 - (I - e)w2i23 - eR,Q, - - OA* (Q, -0,) 
A%, 

Q2 =-wJRI i-(1-e)w,Q,+eR,Q,-- OA* (Q2-02) 
A’/$ 

a3 = (I+ e)tqQ, - qQ2) - =(a, -01) 
c,c 

r 

w, =dr-jsinp, w2 =bcosa+qcosj3sina, oj =-psina+ycospcosa 

We will determine the moment D of the internal damping forces. It is usual to split this into two parts. 
The first, the so-called “quenching” moment, leads to a reduction in the axial component of the angular 
velocity of the body (this part is not considered here). The second part ensures dissipation of only the 
angular motions of the axis of the body and can be represented in the form 

where ki is the external damping coefficient. 
This also completes the construction of the ninth-order dynamical system with nine phase variables: 

Q (i = 1,2,3), o,P,y,kB,y. 
This system has an obvious solution, corresponding to the permanent rotation of the body and the 

filler about the vertical with angular velocity wa 

(3.2) 

When s > 0, we have the upper equilibrium position, and when s > 0, we have the lower equilibrium position. 

4. THE STABILITY OF PERMANENT ROTATION 

To investigate the stability of solution (3.2) in the first approximation, we will linearize system (3.1). 
the linearized system is then split into two independent subsystems. One of these is a sixth-order 
subsystem in the variables a, p, Qi, S& 

Mss+(A’t1-e)-C’)02+(k-C,) 
A. A, 

0 
A* 

it?, = -0 - e)w,(fi + acoo) + (I - e)w,R, -$+l* -dc+pw,) 
f 

(4.1) 

Here M = Mi + Ms is the mass of the body-filler system. 
The following first integral 

CR, + C,? = const 

and the equation 
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can be obtained from the remaining second-order subsystem in the variables Q3, $. 
A characteristic polynomial was extract from subsystem (4.1). The stability region was determined 

using well-known Hurwitz criterion. The Hurwitz conditions are extremely complex and cannot be 
investigated analytically. We therefore constructed the boundaries of the stability region numerically. 

We will indicate the set of parameters of the problem for the numerical calculation. The description 
of the body requires three parameters: M,, A, and C,. As previously,? we will assume that, to describe 
the inertial characteristics of the filler in the axisymmetric cavity, three parameters are sufficient, for 
example, Mg, al, and ~23 (al and a3 are the linear dimensions of the cavity). The remaining parameters 
are then found from the relations 

e=- *~~~~~.$i?i_ A~=~ 
ai -a: M (a: -ai)2 

a,Z+af' al +a:’ 5 af+a,Z 
, etc. 

We considered two types of body (1) A, c C, (an oblate body) and (2) A, > C, (a prolate body), for 
each of which we introduce two types of cavity (a): al < u3 (a prolate cavity) and (b) al > u3 (an oblate 
cavity). 

In addition to these parameters it is also necessary to specify four others: o, 00, s and kl. 
The boundaries of the stability region were projected onto the (3, wo) plane. 

5. A TEST EXAMPLE 

We will first consider the case kl = 
of motion have an area integral 

0, when there is no external damping. In this case, the equations 

Gz = -G,sin~+G,,cos~sina+G,cos~cosa=const 

(G, is the projection of the angular momentum vector of the system onto the vertical) and, as is well 
known [6], the problem of the stability of permanent rotation (3.2) reduces to the problem of the nature 
of the extremum of the changed potential energy 

W=G;/2J+MgZ, 

Where J is the moment of inertia of the system about the vertical. 
It can be shown that the sufficient condition for a minimum of Wand, consequently, for the stability 

of the rotation is the inequality 

(C,+C,-A,-A,-Ms2)co2-Mgs>O (5.1) 

This same inequality, but with the opposite sign, turns out to be the sufficient condition for instability 
of the rotation when o f 0. 

The stability condition (5.1) defines a stability region in parameter space. 
We will not concern ourselves here with analysing the nature of the stability on the boundary of the 

stability region itself. 
It is clear that kl = 0 for any cr, the boundaries of the stability region will be unchanged. Consider 

an oblate body. In this case there is a critical value of the parameters 

$=(C,+C,-A,-A,)IM 

such that the lower equilibrium position when s > -s,, will always be stable, while the upper equilibrium 
position when s < s,, will be stable for fairly large o. (Fig. la). Note that for a prolate body the upper 
equilibrium position kl = 0 is unstable for any oo. 

Consider the case of an oblate body with a prolate cavity. We recall that inequality (5.1) does not 
contain the quantity CY - the coefficient of internal friction. Hence, the case considered was used for a 

GAMSONOV, V A. and DOSAYEV, M. Z., A model of the motion of a top with a viscous filler on a rough plane. Report 
of the Institute of Mechanics, Moscow State University, No. 4485, 1997. 
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Fig. 1 

test check of the numerical algorithms. The form of the stability region D obtained in the calculations 
for ki = 0 and any o corresponds to the expected form. 

To fix our ideas, suppose further that o = 4 kgm2/s. We will describe how the stability region changes 
when kl increases. 

For fairly small 0 c kl 6 10m3 s-l the stability region D becomes bounded with respect to wa. 
Simultaneously, the “tongue” of stability increases for s < -s,,. 

When k, - lo-’ 8, two bounded stability regions Q and D2 appear in the half-plane s > 0. At the 
same time, a stability region D3 occurs in the lower half-plane (Fig. lb). The regions Di, D2 and D3 
combine with the region D and kl increases. 

Further, as kl increases (kl - 1 s-i) the stability region becomes simply-connected (Fig. lc), and the 
inverse image of the region D3 increases in the negative direction of the ordinate axis to infinity. The 
inverse image of the region D2, in turn, increases in the positive direction. 

As kl increases further (kl = 700 s-‘) the stability region increases and becomes doubly-connected 
(it splits into region D and&). The region Q in this case is shifted to the right (Fig. Id). Further, when 
kl increases to values of the order of lo5 s-l the stability pattern changes considerably. 

We will now discuss the effect of the parameter o on the nature of the variation of the stability region 
as kl increases. 

An increase in cr leads to “stretching” of the stability region. For example, for kl = 0.01 s-l, as o 
increases from 4 kgm2/s to 40 kgm2/s the size of the region Di (Fig. lb) almost doubles, and when o is 
reduced to 2 kgm*/s the size of the region Q is reduced by a factor of 1.4. In addition to this, an increase 
in CT leads to “retardation” of the change in the stability region. For example, for kl = 700 s-i with o 
= 4 kgm2/s we obtain a doubly-connected stability region (Fig. Id). while for o = 6 kgm*/s we obtain 
a simply-connected region. 

We will now consider the case of an oblate body with an ablate cavity. For kl = 0 and any owe obtain 
a stability region similar to that for a prolate cavity (Fig. la). Suppose once again, to fix our ideas, that 
cr = 4 kgm2/s. When 0 < k, c lOA s-’ the form of the stability region does not change appreciably. 
Unlike the case of a prolate cavity, the stability region D is not limited with respect to oo. When 
kl = 10m3 s-i, a bounded stability region Di appears in the upper half-plane (Fig. 2a), which combines 
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Fig. 2 

with the region D as ki increases to lo-’ s-i (Fig. 2b). As kl increases further, the “tongues” of stabili 
ts: expand and converge, and then combine with the central part of the stability region. When kl - 40 s- 

a “tooth” of instability appears in the lower half-plane, while in the upper half-plane a “tongue” of 
stability Di appears (Fig. 2~). 

When k, - 60 s-i the stability region becomes simply-connected. Later it once again splits into two. When 
kl increases further the “tongues” of stability in both half-planes become bounded and contract (Fig. 2d). 

As in the case of a prolate cavity, an increase in the parameter (3 leads to “stretching” of the stability 
region and to a slowing down in the change in the form of the stability region as kl increases. 

It seems obvious that the case of a prolate body should differ qualitatively from the case of an oblate 
body only for 1s 1 < s,,. In fact, the results of a numerical calculation show that the stability pattern for 
the case of a prolate body is obtained by “cutting out” a strip 1s 1 c s,, from the stability pattern for 
the case of an oblate body. 

On the whole, the interaction of the effects of internal friction and external 
gives strange forms to the boundaries of the stability regions. 

This research was supported by the Russian Foundation for Basic Research 
“Universities of Russia” programme. 
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